Deoxycorticosterone Acetate/Salt-Induced Cardiac But Not Renal Injury Is Mediated By Endothelial Mineralocorticoid Receptors Independently From Blood Pressure.
نویسندگان
چکیده
Chronic kidney disease has a tremendously increasing prevalence and requires novel therapeutic approaches. Mineralocorticoid receptor (MR) antagonists have proven highly beneficial in the therapy of cardiac disease. The cellular and molecular events leading to cardiac inflammation and remodeling are proposed to be similar to those mediating renal injury. Thus, this study was designed to evaluate and directly compare the effect of MR deletion in endothelial cells on cardiac and renal injury in a model of deoxycorticosterone acetate-induced hypertension. Endothelial MR deletion ameliorated deoxycorticosterone acetate/salt-induced cardiac remodeling. This was associated with a reduced expression of the vascular cell adhesion molecule Vcam1 in MR-deficient cardiac endothelial cells. Ambulatory blood pressure telemetry revealed that the protective effect of MR deletion was independent from blood pressure. Similar to the heart, deoxycorticosterone acetate/salt-induced severe renal injury, including inflammation, fibrosis, glomerular injury, and proteinuria. However, no differences in renal injury were observed between genotypes. In conclusion, MR deletion from endothelial cells ameliorated deoxycorticosterone acetate/salt-induced cardiac inflammation and remodeling independently from alterations in blood pressure but it did not affect renal injury. These findings suggest that the anti-inflammatory mechanism mediating organ protection after endothelial cell MR deletion is specific for the heart versus the kidney.
منابع مشابه
Deoxycorticosterone acetate-salt mice exhibit blood pressure-independent sexual dimorphism.
We tested the hypothesis that female and male mice differ in terms of cardiac hypertrophy after deoxycorticosterone acetate (DOCA)+salt hypertension (uninephrectomy and 1% saline in drinking water) and focused on calcineurin signaling. We excluded confounding effects of blood pressure elevation or sex-related blood pressure differences by treating DOCA-salt mice with hydralazine (250 mg/L in dr...
متن کاملIncreased reactive oxygen species contributes to kidney injury in mineralocorticoid hypertensive rats.
Hypertension is associated with increased reactive oxygen species (ROS). Renal ROS production and their effects on renal function have never been investigated in mineralocorticoid hypertensive rats. In this study we hypothesized that increased ROS production in kidneys from deoxycorticosterone (DOCA)-salt rats contributes to adverse renal morphological changes and impaired renal function in DOC...
متن کاملDeletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure.
Increased mineralocorticoid levels plus high salt promote vascular inflammation and cardiac tissue remodeling. Mineralocorticoid receptors are expressed in many cell types of the cardiovascular system, including monocytes/macrophages and other inflammatory cell types. Although mineralocorticoid receptors are expressed in monocytes/macrophages, their role in regulating macrophage function to dat...
متن کاملEndothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure.
Recent studies have identified novel pathological roles for mineralocorticoid receptors (MR) in specific cell types in cardiovascular disease. The mechanisms by which MR promotes inflammation and fibrosis involve multiple cell-specific events. To identify the role of MR in endothelial cells (EC-MR), the current study explored the vascular responses to aldosterone in wild-type (WT) and EC-null m...
متن کاملRegulation of vasopressin receptors in deoxycorticosterone acetate-salt hypertension.
Since arginine vasopressin may play a role in mineralocorticoid hypertension, we examined the effects of deoxycorticosterone acetate (DOCA)-salt on vasopressin V1 and V2 receptor binding and their second messengers, inositol phosphate and adenylate cyclase, respectively, in liver and kidney to determine whether altered vasopressin receptor binding is pathogenetic in mineralocorticoid hypertensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 67 1 شماره
صفحات -
تاریخ انتشار 2016